Dairy Industry Farm Dairy Effluent Warrant of Fitness Standard Operating Procedure Manual

August 2015, Version 5

0800 4 DairyNZ (0800 4 324 7969) www.dairynz.co.nz

August 2014

Dairynz≢

DairyNZ Corner Ruakura and Morrinsville Roads Private Bag 3221 Hamilton 3240 Phone 0800 4 DairyNZ (0800 4 324 7969)

Disclaimer

DairyNZ Limited ("DairyNZ", "we", "our") endeavours to ensure that the information in this publication is accurate and current. However we do not accept liability for any error or omission.

The information that appears in this publication is intended to provide the best possible dairy farm management practices, systems and advice that DairyNZ has access to. However, the information is provided as general guidance only and is not intended as a substitute for specific advice. Practices, systems and advice may vary depending on the circumstances applicable to your situation. The information may also be subject to change at any time without notice. DairyNZ takes no responsibility whatsoever for the currency and/or accuracy of this information, its completeness or fitness for purpose.

©DairyNZ Limited 2013

Copyright

Copyright in this publication (including text, graphics, logos, and icons) is owned or licensed to DairyNZ. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1994 and similar legislation which applies in your location, and except as expressly authorised by these terms and conditions, you may not in any form or by any means adapt, reproduce, store, distribute, print, display, perform, publish, or create derivative works from any part of this publication or commercialise any information, products, or services obtained from any part of this publication without our written permission.

Acknowledgements

This Standard Operating Procedure Manual has been prepared by DairyNZ. DairyNZ wishes to thank the following individuals and organisations for their assistance with this document.

Dan Bloomer

• Shaun Hodson

- Debbie Care
- Sefton Lonsdale
- Nikki Kelly

Feedback and suggestions

While every effort has been made to ensure the accuracy of content covered in this Standard Operating Procedure, we welcome any feedback and improvements you may have.

Images shown in this document have come from a variety of sources, and are provided for demonstrative purposes only. They are not intended as design standards, nor do they substitute for the expertise of an Accredited Farm Dairy Effluent System designer.

TABLE OF CONTENTS

Section One- Supporting information	4
Dairy Effluent Warrant of Fitness (WoF) Certification Programme	4
Dairy Effluent Warrant of Fitness (WoF)	5
Process for farmer	5
Prior to the assessment	6
Briefing	9
Climate challenges to completing the WoF	10
Equipment list	11
Assessor health and safety	13
Hazard identification and action	15
Farm visit biosecurity procedures	19
Environmental compliance	21
Section Two- Background effluent system information	23
Section Three- Nutrient management	25
Example of a Nutrient Budget for an under-sized ef area	fluent 28
Section Four- Farm dairy water use	29
Section Five- Farm dairy infrastructure	31
Catchment areas	31
Important notes about catchment areas	
Measuring catchment areas	

Assessing farm dairy infrastructure
Section Six- Soil and landscape classification 63
Soil risk classification framework64
Putting soil risks and classifications in context66
Section Seven- Assessing land application systems 68
Irrigators and applicators71
Optimum pressure ranges for commonly used effluent applicators
Assessing irrigator performance75
Maintenance and condition checks on Travelling Irrigators.
Maintenance and condition checks on Low Rate (Sprinkler and Pod) Irrigators80
Maintenance and condition checks on Cannon Irrigators83
Maintenance and condition checks on Pivot Irrigators87
Measuring depth and rate of effluent irrigation90
Wind gauges90
Test preparation90
Depth and rate testing Travelling irrigators91
Speed test for travelling irrigators95
Low rate application systems96
Depth and rate testing Pivot irrigators
Section Eight – Risk assessment 106

Section Nine- Assessment debrief and reporting	115
General points about reporting	116
Section Ten- Appendix	117
Useful contact details	117
Food safety minimum distances	120
Terminology and glossary	

SECTION ONE- SUPPORTING INFORMATION

DAIRY EFFLUENT WARRANT OF FITNESS (WOF)

CERTIFICATION PROGRAMME

Certificate of Completion from the NZWETA WOF Training Course

Complete Application form

- Contact details
- Brief Bio on yourself (business) to go on WOF register
- Sign a legally binding agreement

Assessment Process

- Application reviewed
- Calibration exercise undertaken by applicant (on-line)
- Witnessed on-farm WoF assessment
- If concerns raised a second on-farm assessment may be required.

Certified WoF Assessor for two years

Required to undergo yearly calibration exercises (on-line) to maintain certification

Fail

Areas of concern identified by assessors

Can reapply after improving skill area Can appeal in writing to the WoF Certification Advisory Group to be reassessed

Pass

DAIRY EFFLUENT WARRANT OF FITNESS (WOF)

PROCESS FOR FARMER

Farmer requests a dairy effluent WoF assessment

WoF website

- WoF assessment process
- Questions and Answers
- Bios on WoF assessors and contact details

Select a WoF assessor. Terms of sale agreed between farmer and WoF assessor

WoF conducted (electronic data capture) and information stored at QCONZ

WoF Report sent to farmer with information on good effluent infrastructure viewed and also areas of concern, why and suggested actions

PRIOR TO THE ASSESSMENT

- 1. Contact the farmer to ask if they interested in becoming part of programme. If yes, establish the following details on the telephone:
 - a. The time and date for the visit
 - b. Benefits of the WoF Assessment
 - c. All information collected during the WoF will be treated as confidential¹
 - d. That a risk assessment of, and feedback on, the system will be presented in a final WoF Assessment Report
 - e. Who will be:
 - i. paying for the service,
 - ii. present at the time of the WoF,
 - iii. present for the assessment debrief,
 - iv. receiving copies of the final WoF Assessment Report.
 - f. Contact details:
 - i. Contact person/people
 - ii. Site address and full postal address
 - iii. Landline and mobile numbers
 - iv. Dairy company supply number
 - v. Email address for information and reminders.
 - vi. Establish if farmer request feedback letter by email or in the post

¹ DairyNZ reserves the right to use the data for benchmarking and trend analysis

2. Establish the following details with the farmer:

- a. For bio-security purposes, is the farm currently managing an outbreak of any contagious animal disease such as Salmonella or Yersinia (if yes, suggest the audit occurs once the disease has been controlled)
- b. Who will be the on-farm contact to answer questions on the day
- c. Test requirements
 - i. That the irrigator needs to be at the furthest or most elevated paddock on the day of the testing
 - ii. It is recommended that the irrigator is in good condition, greased, types pumped up, has good nozzles, drag line pulled up well and set on fastest speed
 - iii. That the volume of effluent needed for the test will be available (especially if they pump directly from sump)
 - iv. Whether the system can pump effluent at same time as milking.
 - v. That a depth/rate test will be conducted on their irrigator
 - vi. That flow rates and pressures will be measured
- d. Background information needs
 - i. Farm map with effluent areas known
 - ii. The 'normal' set up on farm

- iii. Nutrient budget (and Nutrient Management Plan if they have one) to be ready for viewing
- iv. Resource consent available if applicable
- v. Who designed and installed (or upgraded) the effluent system, and how long ago? (establish if there are any conflicts of interest between the auditor and the system designer/installer)
- vi. The make and type of all major system components
- e. That the farmer will provide a Health and Safety briefing/induction on arrival²
- f. Send an email/letter to the farmer summarising the above points as discussed and confirming the date and time.

3. Immediately prior to the visit:

- a. Call the farmer 1-2 days prior to the assessment to:
 - i. confirm arrangements
 - ii. remind them of any requirements for the day
 - iii. Keep an eye on the weather forecasts

The Assessor must request permission to bring additional visitors, children or animals onto the farm, for farm policy, confidentiality, health and safety and biosecurity reasons.

Ensure have knowledge of regional council rules and permitted activities in the region where WoF undertaken.

² A simple one-pager can be created by the farmer on the Compliance Toolkit website. Search compliancetoolkit.co.nz > Create a form> Health and Safety> Visitors to the Farm- Hazard information guide.

ON THE DAY OF THE ASSESSMENT

BRIEFING

Meet the farmer at the dairy or the house and go over the plan for the assessment. This is also an opportunity to:

- Collect any paperwork/documents required for the assessment such as copies of Consents and nutrient budgets etc., and
- Be briefed on health and safety issues you may encounter during the visit.

This may be a good time to cover the questions in the Background Information in Section Two.

Discuss their level of input or attendance for the day. Consider doing the sections which require their attendance at the start or end of assessment to save their time. Plan the timing or communication for when pumps or power need to be turned off or on.

CLIMATE CHALLENGES TO COMPLETING THE WOF

If conditions are not satisfactory, the testing should be postponed. It is possible to provide a report without the depth and rate test, provided the physical assessment of the application system is thorough and a pressure test at the applicator is also measured. Additional disclaimers regarding the accuracy of the report must be provided.

Rain

Do not attempt to do the depth and rate test if there is more than a light drizzle. Include three containers as controls outside of the wetted area, and use to measure and subtract the depth of rain water collected, if measurable.

Wind

The application testing should be carried out in conditions representative of those commonly experienced in the field. Wind speed and direction must be measured and recorded.

Evaporation

In very hot, windy conditions evaporation from containers can be significant. Do not leave containers exposed longer than necessary. If unsure, run an evaporation test in parallel with the application test.

EQUIPMENT LIST

- NZ Safety Standard approved Life jackets
- High visibility clothing
- Hand cleaner/sanitiser
- Pressure gauge capable of measuring 0-200 psi, with ± 5 psi accuracy. A diaphragm-type gauge which will keep effluent from entering the gauge is best.
- A flow meter. These must be corrosion resistant, be accurate to ±3% or better, and have no moving parts.³
- Wind gauge (handheld, range 0-10 ms⁻¹, accurate to 1 decimal place)
- Containers x 60
- Weights for container ballast (e.g. palm-sized stones)
- 50 metre tape measure
- Electric fence standards or stock-spray paint (for speed test)
- Measuring cylinders (in a range of sizes 25ml, 50ml, 100ml, 500ml, 1000ml and 2000ml)
- Stop watches/ or smart phone timer system
- Camlock connectors (standard female to female and male to male 90mm, 64mm, 51mm to 75mm, male to female (x2) is helpful)

³ There are two main types used, both with pros and cons: An inline electromagnetic, which can cause some turbulence issues if trying to fit to a hose which is not 50mm, or ultrasonic wrap-around external meter. These require a perfectly round shape hose, and may encounter difficulty if the hose shape deforms.

- Pry bar (opening the locking arms on the Camlocks when putting in the pressure gauge etc. can also be used for checking irrigator bushes, shafts, drive arms etc. for wear and play)
- Dead-blow hammer (soft face which avoids damage to Camlock faces etc., it is also hollow and is filled with lead shot, wont bounce off when hitting objects, - is good to have for putting stubborn Camlocks together, conventional steel hammers may damage the Camlock.)
- Calculator
- Measuring wheel
- Vehicle for on farm to carry equipment (4WD recommended)
- Spade
- Tools for measuring pipeline and nozzle diametervernier-type callipers are ideal
- Clip board/s
- Pens / pencils
- Computer/tablet and printer
- Sun protection (hat, glasses, sunblock)
- Disposable gloves

Also suggested:

- Hand held radios
- Hand held GPS
- Smart phone apps such as clinometer

ASSESSOR HEALTH AND SAFETY

- A safety briefing from the farmer about any hazards present on the farm on the day of the visit is required before starting work.
- Follow all Health and Safety guidelines and policies set out in this document, and those provided by the host farmer.
- All WoF Assessors must wear High-Vis clothing while on farm, and use any appropriate safety equipment.
- Failure to take all proper precautions can result in serious injury, illness or death.
- Assessors should not be operating any PTO/tractor/stirrer or mechanical solids separation system (or any other machinery owned by the farmer)
- Assessors should not be working around effluent storage facilities alone, and under no circumstance try to access floating pontoons

Key messages about Health and Safety:

- Ask yourself- "What can go wrong here?" if in doubt, don't do it!
- Eliminate any potential hazards
- **Isolate** those which cannot be eliminated
- Minimise any potential hazards which cannot be avoided

This symbol indicates a part of the assessment may be

particularly hazardous and caution is recommended. It is advisable to have at least two people present when assessing these areas in case of an accident.

Page 13

HAZARD IDENTIFICATION AND ACTION

Moving and rotating parts are a serious hazard.

- Failure to take all proper precautions may result in impact injuries, crushing or amputation of limbs, serious injury, or death.
- Ensure moving parts have guards in place where possible.
- Stay clear of tractor PTO shafts when near tractor driven pumps, stirrers, solids spreaders and slurry tankers.
- Loose clothing must not be worn when near moving parts and long hair must be tied back.

Using an ATV on farm

- Ideally complete a NZQA accredited training course to increase the driver's knowledge, awareness, and skill level. Visit nzqa.govt.nz for more information.
- Wear a helmet, and appropriate footwear
- Establish the safe routes and areas to ride an ATV
- Ensure that tracks and access-ways are maintained
- Avoid steep terrain
- Reduce speed to a safe and appropriate level for the conditions
- ATVs are not designed to carry passengers or cargo
- Children under the age of 12 are not permitted to drive an ATV, and those between the ages of 12-15 are not permitted without training, or if they are unable to control the vehicle.

Safe driving on farm

- Consider taking an off road driver training course. Assessors should have all required licenses
- Drive to the conditions; reduce your speed to a safe and appropriate level for the conditions (20 km/hr. on farm).
- Be aware of ground conditions and how they affect limitations.
- Select the correct gear for the situation.
- Engage four wheel drive before you require it.
- Farm races can be extremely slippery, be cautious.
- Frost / dew on grass, wet or very dry ground conditions can lead to loss of traction and vehicle control.
- Avoid steep terrain if possible. If unavoidable, drive straight up and down hills. DO NOT drive across the face of a hillside. Be careful going over the crest of hills.
- Drive within the limits of the vehicles capabilities. Be aware of the centre of gravity of the vehicle and the effect on the tipping/rolling point when travelling on hills. Be especially cautious if you are carrying an additional load on your vehicle, especially liquids which will change vehicle handling.
- Be aware of driving through long grass, which can hide drop-offs, holes, tree stumps and other sudden changes in terrain.

Ensure your vehicle is regularly maintained and serviced and tyres are suitable for off road use.

Pressure in effluent systems

- Pressure levels in effluent systems ranging from 0 to200 *psi* are possible; such pressures can seriously injure or kill people nearby and cause serious damage to property.
- Extreme care should be taken when working with hydrants, pipework and applicators to prevent impact injuries. Hydrant bridges if handled while under pressure can cause serious injuries especially to the hands, arms, head and face.
- Hydrants and pipes should only be disconnected with the pump turned off and the system depressurised.
- Ideally there should be a taps / valves on hydrants which should stop flow through the hydrant.
- There is risk of pipe rupture and debris being thrown under pressure.
- Be aware of risk of being sprayed with effluent, among more obvious things, it is a health risk (Leptospirosis is just one example).
- Before working near pumps, stirrers and solid extractors the power supply must be turned off and the power plug disconnected from the power point to prevent machinery from starting unexpectedly.
- When working on an irrigator, turn off the pump and disconnect the effluent supply line from the irrigator.

Beware of electrocution when working around electrically powered equipment.

Effluent pond safety

- Wear a lifejacket when inside the effluent pond area.
- Do not work alone around ponds or sumps.
- Have a safety throw rope and life ring on hand.
- Beware of slip and trip hazards around effluent ponds. Failure to do so may result in drowning or serious injury.
- Pond liners can be extremely slippery which may lead to loss of footing and falling into the effluent pond.
- DO NOT attempt to access effluent pontoons for any reason as these can be unstable; present a trip, slip and entanglement hazard with risk of injury, drowning and death.
- Do not attempt to walk on pond crusting, and be aware that the pond edge can be deceptive due to growth of weeds and irregularities in pond shapes. Stand well clear of where you believe the edge to be.
- Thick crusts can form on pond surfaces, they can be 600mm thick, and a person falling through such a crust could result in entrapment beneath the crust and drowning.
- Wash your hands after working with effluent and before eating. Effluent is a health risk; diseases such as leptospirosis may result from failing to do so.

FARM VISIT BIOSECURITY PROCEDURES

Although diseases are most commonly introduced into a herd by the addition of animals, there is a risk of disease introduction by people traveling between groups of animals. This risk may vary considerably and is influenced by the specific disease agent, the extent of the animal contact, the time elapsed since the last animal contact, and the preventive measures used.

A basic cleaning kit can be made using a fish crate or similar which you may use to contain or carry equipment in the car, a long handled scrubbing brush and a basic disinfecting detergent. Giving testing containers a rinse is preferable, but may not be practical.

Pre-visit:

Check with the farm whether they have a biosecurity plan for visitors, or if they are currently experiencing an outbreak of contagious disease. For diseases such as Salmonella or Yersinia, postpone the visit until the farm is clear. Even if not required by the farm, rural professionals should, at a minimum, set the example by using measures that would seem prudent for a wellmanaged farm.

After the visit:

If you are traveling directly to another farm:

• Before leaving, dirty boots should be cleaned and disinfected, and overalls should be removed before re-entering the vehicle. Cleaning and disinfecting can be carried out at a non-farm location if not travelling directly from farm to farm. It is good practice to use a fresh set of overalls between farms.

• Hands should be washed with soap and water.

• If the vehicle or equipment is heavily soiled, give it a wash with a high pressure hose on the tanker pad if there is one available.

ENVIRONMENTAL COMPLIANCE

Every regional council has their own rules and interpretation of the Resource Management Act.

WoF Assessors **must** understand the Regional Council requirements for the farm they are assessing. Farms may have a combination of Consents, Permitted Activities on their farm.

For a rapid overview of the requirements in a region, download a Compliance Checklist from the DairyNZ website⁴. Copies of Regional Plans can be found on each council's website. References for the Regional plans and contact details are listed in the Appendix.

Resource Consents

View a copy of every consent the farmer holds for effluent related activities on their farm.

All breaches of Consent or Permitted Activity requirements must be noted during the audit, and areas of concern raised in the final report.

⁴ Search: Farming Resource Centre> Environment> Effluent> Compliance with Rules.

August 2014

SECTION TWO- BACKGROUND EFFLUENT SYSTEM INFORMATION

To save time on the day of the assessment, these could be covered over the phone or at a pre-visit.

Q. 2.1 Are there system risk areas which the farmer is aware of?

Examples could include but are not limited to evidence of:

- Insufficient effluent storage
- Leaking or inadequate sealing of any effluent holding or storage facility
- High rainfall or high risk soils on effluent receiving area
- Waterways in proximity to effluent receiving area
- Artificial drainage including surface, mole and tile drains
- Pump/pipe work, applicators, stirrers, solids separators or other infrastructure they believe is inadequate for workload
- Poor condition of equipment/infrastructure
- Any effluent escaping into environment/waterways/groundwater
- Slope or elevation of effluent receiving area for land application
- Siphoning from the effluent system resulting in over application
- Ponding/runoff

Q. 2.2 Have there been any recent changes, or planned upgrades to the system?

Identify any improvements, modifications, replacements, or extensions to the system. Any change which will have an impact on effluent volume or management.

Examples could include, but are not limited to:

- Addition of a feed or standoff pad
- Additional effluent storage
- Change in type of effluent applicator (e.g. to low rate or high rate system)
- Addition of a solids separation system
- Extension of effluent application area
- Increase in herd size, or changes to the milking routine, or length of milking season
- Changed storm-water diversion, or covering and guttering roof water from buildings
- Green-water recycling or other water conservation measures

Q. 2.3 Were there any issues with the system in the past season?

These can be either management or infrastructure issues, for example:

- Break-down of pumps, equipment failure, split hoses
- Maintenance demands
- Labour demands (complicated, time consuming, covers an extensive area etc.)
- Climate influences (very wet or dry season, short window of opportunity to irrigate, greater use of standoff facilities than normal)
- Staff training or management
- Lack of storage, overflows from pond/sump
- Regional council enforcement actions
- Issues raised by dairy companies
- Over-application, ponding or runoff of effluent towards or entering waterways

SECTION THREE- NUTRIENT MANAGEMENT

Section Three	Q.3.1 Are records kept of effluent application areas and run times?				
Assessment	Sight evidence of regular records that cover:				
	Date of application				
	Application area/paddock/run				
	 Duration of application (stationary/low rate applicators) 				
	Effluent depth and rate test results throughout the season				
	Maintenance and service records, including date of replacement of parts and irrigator				
	rubberware				
	Any issues related to the effluent system and corrective actions				
Risk	Many councils impose an annual Nitrogen (N) limit and evidence of compliance is required.				
	Factors that can lead to non-compliance include:				
	 Irrigators applying more effluent than expected 				
	Too many applications to one area				
Mitigation	• Any records which demonstrate compliance. These may be kept at the dairy e.g. Dairy Diary,				
steps	spread-sheet, DairyNZ run-sheet template, or effluent runs recorded on a farm map.				
	Depth and rate tests.				
Comments	Records of effluent application areas and run times must be maintained. They are critical to				
	ensure and demonstrate that over application of nutrients, particularly N, is avoided.				
	These records are required in some regions as part of the Consent or Permitted Activity Rules,				
	but they are good practice on any farm. General maintenance and application records may				
	prevent over-application of nutrients, can make effluent planning more effective, and may				
	prevent wear and tear or breakdown through proactive system maintenance.				

Paddock	Date	Run number	Signature	Comment (e.g. signs of ponding or runoff)
1	15/8/10	7	FNP	
1	16/10/10	8	FNP	
1	12/12/10	4	WJP	
2	6/9/10	10	WJP	Ponding at south end, too wet?

Effluent application recording sheet example

Recording systems. Photo One: DairyNZ Effluent Application recording sheet. Photo Two: Farm map recording system.

Section Three	Q. 3.2 Is there a current nutrient budget? Does the effluent area meet regional nitrogen			
	loading limits?			
Assessment	Nutrient budgets (NB) can be 2-3 seasons old, (unless there have been significant farm system			
	changes since the last budget was done).			
	CHECK:Effluent Block nutrient budgets to ensure:			
	 Nitrogen (N) inputs from effluent do not exceed the annual N limit stated by the regional council 			
	 N inputs from fertiliser plus effluent are within rule, plan and budget allowances for the effluent block area 			
	 Check that the size of the effluent block in the NB matches what is happening in the field. 			
Risk	Nutrient losses- particularly N and P to surface and groundwater, a high risk in sensitive			
	catchments.			
Mitigation	Risk management includes using a Nutrient Management Plan (NMP) and extending effluent area			
steps	to meet:			
	 Annual N limits, and 			
	 Maintenance Potassium (K) application rates. 			
	As a good practice rule, total N application from effluent and fertiliser shouldn't exceed 200 Kg			
	N/ha/yr.			
Comments	Significant savings can be made when fertiliser decisions are made using a NB and a NMP.			
	Nutrient losses not only represent an environmental risk, but a financial loss to the farm.			
	Although not an environmental concern, over application of K is a loss of valuable fertiliser, and			
	can result in animal health problems. Good practice is to size the effluent block to meet			
	maintenance K requirements.			

August 2014

 ${}^{\rm Page}27$

EXAMPLE OF A NUTRIENT BUDGET FOR AN UNDER-SIZED EFFLUENT AREA

Nutrient budget

(kg/ha/yr)	Ν	Р	К	S	Са	Mg	Na	H+*
Nutrients added								
Fertiliser, lime & other	200	0	0	17	0	0	0	0.0
Rain/clover N fixation	55	0	0	1	0	1	1	0.1
Irrigation	0	0	0	0	0	0	0	0.0
Effluent added	179	26	189	18	25	14	0	-5.2
Supplements fed on block	27	6	15	4	1	3	1	0.4
Nutrients removed								
As animal products	86	15	19	5	21	2	6	0.0
As supplements	0	0	0	0	0	0	0	0.0
Net transfer by animals	14	-1	24	1	3	1	-1	-0.8
To atmosphere	63	0	0	0	0	0	0	0.0
To water	69	7.0	66	21	56	5	56	-3.4
Change in block pools								
Organic pool	230	20	0	13	0	0	0	-0.7
Inorganic mineral	0	15	-3	0	-2	-1	-7	0.0
Inorganic soil pool	0	-24	99	0	-51	11	-51	0.1

This NB is from a farm in the Waikato.

N inputs from effluent are 179Kg N/ha which exceeds the Permitted Activity rule of 150 Kg N/ha/yr. on pasture for this region. The Combined fertiliser and effluent application is 379 Kg N/ha/yr., resulting in 69 Kg N/ha/yr. leaching losses.

The K input on this block is 189 Kg K/ha/yr. which is resulting in losses of 66 Kg K/ha/year.

Recommendation for this example: Increase size of effluent block to reduce losses, and no added N fertiliser on effluent block.

 ∞

Page 2

SECTION FOUR- FARM DAIRY WATER

Required for the Dairy Effluent Storage Calculator. Refer to the 'How to use the Dairy Effluent Storage Calculator' manual for detailed instructions on the requirements.

Section Four	Assessment	Details
Q. 4.1	The max number of cows being milked	Influences the maximum daily effluent generation
Peak cow		
numbers		
Q. 4.2 Length	Lactation start date	The number of cows generating effluent, length of
of season	 Lactation end date 	season and time of year (in relation to soil
	 Average number of days in the season 	moisture/climatic conditions).
Q. 4.3 Daily	 Length of AM milking (during peak) 	The length of time the cows spend at the dairy
Milking time	 Length of PM milking (during peak) 	determines how much effluent is generated at the
	• Once a day or 16hr milking during season	dairy.
Q. 4.4 Plant	 Herringbone or Rotary 	Note the use of a platform wash on a rotary.
type	 Number of sets of cups 	The number of cups determines volume of fresh
	 Use of platform wash (rotary dairies) 	water required for plant wash.
Q. 4.5 Plant	 Number of cups/clusters 	Note: Water use is calculated as 40L of
washdown	Vat capacity	water/bail/milking plus 12-18% of the vat capacity,
water	• Total volume of plant wash in Litres/day	per vat wash (after pick up, assuming daily
		collection). Note weekly wash cycle routine,
		typically there will be two alkali washes per week
		which will add an additional 10L per set of cups
		and 2% of vat capacity for each alkali wash.

USE

Q 4.6 Milk Cooling	 Water volume used through plate cooler Fate of water used after milk cooling 	 Plate cooler water use is typically 2.5 x the peak milk flow rate. E.g. 40 bail dairy with an average peak milk flow rate of 3L milk per minute/cow, could have a cooling water demand of 300L water per minute. * Note what happens to this water after it is used for cooling. It is typically re-used for plant wash and other cleaning, but in some dairies may be going to waste in effluent system.
Q. 4.7 Other water use around the dairy	 Length of time spent washing the yard (minutes/milking) x (milking/day) Water-use in yard wash in L/minute for a daily yard wash (L/day). Other general hosing within dairy, i.e. platform, vat room, platform wash, teat washing etc. Total Litres/day on other wash Note any continuously running, leaking hoses or water sources in the dairy Any water saving technology such as green-water recycling, dung-busters, chains etc. 	 Average daily wash water volumes can be entered on a monthly basis. Average industry wash water estimates of 70 L/cow/day are misleading and should not be used. This figure can vary anywhere from 30 -120 L/cow/day. Measure the actual water use on farm and adjust the default value in the DESC using accurate information for this farm. Wash water volumes may change throughout the season as milking routines and cow numbers vary, however there is generally not enough of a variation to warrant changing volume figures throughout the season, as the plant wash stays the same and yard wash will only have a minor reduction.

 ${}^{\rm Page}30$

SECTION FIVE- FARM DAIRY INFRASTRUCTURE

CATCHMENT AREAS

Measure any catchment areas- i.e. any surface area which captures stormwater, which is then directed into the effluent system.

NOTE: This is required by the Dairy Effluent Storage Calculator. It determines how much rainfall is being collected or directed into the effluent system, hence the contribution that rainfall is having to the overall effluent storage volume.

Determine whether a stormwater diversion system is in place for any of these catchment areas, and the duration and frequency of use. For example is fresh clean water diverted from the yard area all winter? Is there effective guttering and spouting in place on all buildings within the catchment to direct rainwater away all year round.

NOTE: Active stormwater diversion throughout the milking period must only occur when the surface is clean.

What is considered a catchment area	What is not a catchment area
Any area where water is collected and directed to the effluent system	For all covered structures the roof water must be diverted from the FDE system
 Yards and concrete races Solids bunkers /storage area Shed roof (if water not 	TanksCovered solids bunkersCovered Feed pad area
diverted)Feed pad	 Covered animal shelters /houses
Weeping wall bunkersSumps	 Dairy roof (if roof water diverted)
• Tanker aprons and	 Ponds (built into the

IMPORTANT NOTES ABOUT CATCHMENT AREAS

- Any area that collects rain that is directed to the effluent system is considered a catchment area
- A covered area from which runoff water does not enter the effluent system is not considered a catchment area
- Storage ponds and tanks are not considered catchments these are considered under the Storage Tab in the Dairy Effluent Storage Calculator
- Weeping walls and solids bunkers are considered to be catchment areas
- A covered feed pad is not considered a catchment area as long as the roof runoff does not enter the effluent system. If a covered feed pad roof runoff does enter the effluent system then it is considered a catchment area.
- Include the tanker apron, vat stands, concrete races and underpass areas if they flow into the effluent system.
- Look out for unintended catchments, for example if the tanker pad is un-bunded, it may be draining the whole tanker loop and wider yard area. Or, if a pond is below ground level, stormwater from the surrounding area may also be draining into the effluent pond if there are no stormwater barrier drains in place.
| MEASURING CATCHMENT AREAS | |
|---------------------------|--|
| Postanglas | |

Key . Height- H Width- W Radius- r

4m 5m **Triangles** 3m 7m **Half circles** 7m Dairy Shed 77m² Roof 20m²

August 2014

Rectangles

Formula	WxH	II	Total Area
Example	5m x 4m	II	20m ²

Formula	0.5x W x H	II	Total area
Example	0.5 x 7m x 3m	II	10.5m ²

Formula	r x r x 3.14 x 0.5	=	Total
			area
Example	7m x 7m x 3.14 x	=	77m ²
	0.5		

Square Formula Total area = + Half Circle - Triangle $20m^2 + 77m^2$ Example 86.5m² = $-10.5m^{2}$

To calculate the catchment contribution of rainfall falling on the yard, multiply the annual rainfall by the surface area of the catchment areas. E.g. 1200mm/yr. x $250m^2 \div 1000 = 300m^3$ $(1m^3 = 1000 \text{ litres})$

ASSESSING FARM DAIRY INFRASTRUCTURE

Section Five	Q. 5.2 Assess gutters and spouting on the dairy and buildings in yard catchment		
Assessment	Evidence of:		
	 Leaking or broken spouting 		
	Covered areas without spouting where w	vater drains into the effluent system	
	Surface water around facilities draining in	nto effluent system unnecessarily	
Risk	Unnecessary increase in effluent volume to r	nanage	
Mitigation	Effective guttering on covered areas with div	version away from effluent system.	
steps	Rainwater captured and used for yard washdown or other use		
Comments	Although not directly a compliance or environmental risk, unnecessary water		
	labour requirements.		
Photo One: Ineffective guttering- spouting with no downpipe.		Example: 600mm of rain on a 400m ² roof is equivalent of 240m ³ of additional water being added to the effluent system. If pumping from the effluent pond at 15m ³ /hour, there would be an additional 16 hours of pumping costs, labour, wear and tear on equipment.	

Section Five	Q. 5.3 Assess the tanker pad
Assessment	Evidence of:
	Milk entering freshwater via runoff from tanker area, or drain, or not being
	captured by the effluent system
	• Fresh surface water from yard area draining into tanker pad drain and entering
	effluent system.
Risk	Milk entering freshwater.
	• Excessive freshwater from tank track and yard entering effluent system.
Mitigation	If a concrete tanker pad is present, it is fully sealed with drainage to effluent
steps	system (milk company requirements vary). Pads should be bunded to prevent
	water from yard and track area running onto tanker pad.
Comments	Freshwater entering the effluent system increases the storage requirements and
	labour in effluent management. Concreting of tanker pads may be a milk company
	requirement, these vary between companies.
Photo One:	
Water from	
vard area can	
drain into	
effluent system.	
Photo Two:	and the second
Raised tanker	
pau.	the second s

Section Five	Q. 5.4 Assess the yard area
Assessment	Evidence of:
	Sealing faults in concrete yards, i.e. major cracks or holes, absence of bunding
	and nib walls around edges to prevent overflow
	Any effluent, not being directed to effluent system
Risk	Leaching and overflow to environment
Mitigation	No cracks or holes in concrete
steps	
Photo One: Effluent entering a paddock at the end of a nib wall section. Photo Two: Cracked and unsealed yard concrete.	

Section Five	Q. 5.5 Assess the entry/exit points	
Assessment	Evidence of:	
	 Inadequately sealed entry and exit points 	
	 Excessive effluent, slurry or mud in high use laneway areas 	
	Runoff of effluent slurry from raceways towards or into freshwater drains	
Risks	 Leaching and overflow to environment 	
	 Animal health issues (lameness, mastitis, teat hygiene) 	
Mitigations	 Concreted and fully sealed with no major cracks or holes 	
	 Fully bunded around edges to prevent overflow 	
	Drains to effluent system	
	 Nib wall to prevent stones being kicked onto concrete areas by stock 	
	Geocell matting	
Comments	Cow flow issues which may result in more effluent generation in the yard or on	
	raceways:	
	Uneven surfaces,	
	Large stones kicked onto concrete,	
	Large puddles,	
	 Exposed sharp stones or rock, 	
	Deep mud,	
	Yard entry point narrower than the raceway	

Section Five	Q. 5.6 Assess the sump area
Assessment	The sump shows no evidence of:
	Overflowing or leaking
	Construction from permeable materials, or showing faults or damage
	 Potential for overflows to reach waterways
Risk	 Leaching and overflow of effluent to the environment
	Safety hazard
Mitigation	Correct capacity for herd size
steps	Regularly maintained
	 Stirred or agitated as required
	Provision for containment of overflow
	Float switches or alarms
	 Safety provisions such as escape ladders, fencing, signs, ropes etc.
Comments	Hazardous area: safety measures such as escape ladders, fencing and
	signage around the effluent system are important, and may be required to
	meet Department of Labour requirements.
	It is recommended that for any inspection on any offluent storage facilities/
	numes (agitators, they are firmly secured, and at least two people are present at
	the time in case of an accident. Assessors should not attempt to access pontoons
	the time in case of an accident. Assessors should not attempt to access politoons

	while in the pond area at any time.
Section Five	Q. 5.7 Assess the stone trap
Assessment	Evidence of:
	• Effluent by-pass due to being too full of sediment, or having the inlet too close to the outlet
	• Leaking/leaching due to cracked or damaged structure, or not constructed from impervious materials
	• Overflow, leachate or runoff which is not captured within the effluent system
	 Solids from stone trap emptied onto unsealed surface
Risk	Leaching and overflow of effluent
	Inadequate entrapment of sediment, leads to increased wear and tear on pump
	and equipment
	 Full stone traps appear deceptively shallow, and pose a drowning or
	entrapment risk to stock and people.
Mitigation	 Correctly designed inlet and outlets in stone trap (see photo)
steps	Maintenance programme in place
	 Solids stored on a sealed pad which drains back to effluent system
	Correctly sized for herd
	Fully sealed construction
	 Provision and containment of overflow
	Effective design to slow water velocity

	Health and safety provisions
Comments	Wear and tear on pumps and equipment from an ineffective stone trap may increase the likelihood of an equipment failure, which is a compliance risk. Stone traps are a hazardous area: safety measures such as fencing and signage around the effluent system are important, and may be required to meet Department of Labour requirements.
Photo One: A stone trap should be designed to allow for maximum decrease in water velocity; allowing for sediment to settle out before the water exits the stone trap.	Grit/stone Drop Zone

Section Five	Q. 5.8 Assess the effluent system drains/channels/pipes
Assessment	All channels/pipes containing effluent are sealed and directed to the effluent
	system
	No evidence of uncontained effluent
Risk	Seepage, run-off and leaching of effluent
Mitigation	Use of impermeable materials for the construction/lining of effluent channels.
steps	
Section Five	Q. 5.9 Assess sludge piles and effluent solids bunkers
Assessment	Sludge and solids are stored in a suitable place (e.g. not in a paddock or near a
	waterway). No evidence of:
	 Sludge stored on an unsealed/ uncontained surface
	 Leachate or runoff which is not captured by the effluent system
Risk	Seepage, run-off and leaching of effluent. Risk is proportional to the size of the
	sludge pile and proximity to waterways
Mitigation	Sludge stored on a sealed and contained area, with runoff and leachate directed
steps	back to the effluent system.

Photo One: Effluent stored on an unsealed earth surface with no cover.

Photo Two: Effluent stored on concrete surface which drains back into the effluent system. This effluent is also being stored under a covered area.

Page**42**

Section Five	Q. 5.10 Assess the solids separation area
Assessment	The solids separation facility shows no evidence of:
	Overflowing onto land
	Being constructed from permeable materials, or showing faults or damage
	 Potential overflows can be contained within the effluent system
Risk	 Leaching and overflow of effluent to the environment
	Safety hazard
Mitigation	Sealed and contained
steps	Drains back into effluent system
	 Adequately sized for volume of effluent stored or processed
	 Separators maintained and functioning effectively
	• Safety provisions to protect people and animals from entering a weeping wall
	type storage facility; escape mechanisms, fencing, signs etc.
Comments	Hazardous area: safety measures such as fencing and signage around the effluent system are important, and may be required to meet Department of Labour requirements.

Page**43**

screen separator.

press separator and sealed concrete receiving area.

Photo Three: Weeping wall with central liquid sump

 $P_{age}44$

Section Five	Q. 5.11 Effluent solids spreading
Assessment	How are effluent solids managed?
	If applied to land, how?
	Solids should not be:
	 Applied in such a way that there is runoff to waterways
	 Applied too deep to cause nutrient loading problems
	• Dumped or piled on an unsealed surface (such as under trees, over a bank,
	in a rubbish pit, down a tomo etc)
Section Five	Q. 5.12 Assess the available effluent storage
Assessment	Effluent storage volume available
	Record the following measurements for any storage facilities (m):
	 Length, width, depth, batter (i.e. 2:1, 1:1, 3:1 etc.)
Risk	Having insufficient emergency storage is a major environmental risk as effluent
	may have to be applied at unsuitable times such as during high rainfall.
Mitigation	Portable or temporary tanks or bladders.
steps	
Comments	Required for the Dairy Effluent Storage Calculator. The depth may only be
	an estimation given by the farmer.

Section Five	Q. 5.13 Assess the effluent storage facility condition
Assessment	The effluent storage must effectively contain the effluent.
	No evidence of:
	• Storage facility being too full (within 400mm of the top) or having previously
	over-topped
	• Dark green lush grass, boggy areas on or near the pond which may indicate a
	leak
	Cracks in the walls of the pond or slumping of walls, rabbit holes or tree roots or
	any other indication of poor structural integrity
	 Signs of crusting, vegetation growth on the pond
Risk	 Leaching and overflow of effluent to the environment
	 Pond or storage collapse if above ground
	 Safety hazard, for service access as well as staff, children and animals
Mitigation	Sized in accordance with the DESC
steps	 Well designed (meets the Code of Practice, and IPENZ Practice Note 21) and
	constructed from impervious materials and fully sealed
	 Maintained to prevent crusting, weed growth, stock access etc.
	 Agitated or stirred as required
	 Surface storm water diverted away from effluent storage facility
	 Safety provisions to protect people and animals from entering the storage
	facility; escape mechanisms, fencing, signs, ladders buoyancy aides etc. Pontoon
	securely anchored- with safe access for servicing.

	 Water level alarms/float switches/anti-siphon valves
	 Green water recycling to reduce effluent volumes to be managed
Comments	Hazardous area: safety measures such as escape ladders, fencing and signage around the effluent system are important, and may be required to meet Department of Labour requirements. Assessors are advised not to attempt to inspect anything in the pond (i.e. pontoons) unless it has been removed from the pond or firmly secured against a stable and safe viewing area. It is recommended that during any inspection or works on effluent storage facilities that at least two people are present at all times.
Photo One: Concrete lined pond with safety fence. Photo Two: Compacted earth pond with stock fence.	
August 2014	

 $_{Page}47$

Photo One: Severe crusting on pond.

Photo Two: Old style earth pond, possibly too small for current operation, and difficult to demonstrate that it meets sealing requirements.

Photo Three: Dark grass patches at base of pond wall and lush grass in paddock below pond indicating seepage problem.

Section Five	Q. 5.14 Assess lanes and races
Assessment	Laneways should be constructed in a way that surface water is directed off them to
	protect the track surface, and contaminated water is not fast tracked into
	freshwater. Laneways should not show evidence of effluent entering waterways.
Risk	Effluent run-off or direct deposition in waterway, sediment, N, P and pathogens
Mitigation	Directing water off raceways into adjacent paddocks and away from drains and
steps	waterways. Use of grassy swales, soak holes, sediment traps etc.
	Use cut outs prior to low lying areas and/or plantings to absorb and filter effluent
Section Five	Q. 5.15 Assess bridges and frequently used culverts
Assessment	Are bridges nibbed to prevent effluent reaching waterway, is there any evidence of
	effluent entering waterways.
Risk	Effluent run-off or direct deposition in waterway
Mitigation	Timber bunding or nib walling to prevent effluent running off the side of the
steps	bridge. Drainage channels to soak holes on either side of the bridge
Photo One: A	
walls on edges to	
prevent effluent	
and sediment	
overflow into	She was a fact that a second sec
waterway.	

Section Five	Q. 5.16 Assess underpasses
Assessment	Underpasses may have to meet both district and regional council rules.
	Underpasses should not show any evidence of:
	Excessive surface or groundwater entering the underpass, or pooling of water
	on the floor of the underpass
	 Effluent entering surface or ground water
	 There should be an effluent system in place to manage effluent from the
	underpass
Risk	 Leaching and overflow of effluent to the environment
	• Excessive influx of ground or storm water, which needs to be pumped out and
	may be contaminated with effluent
Mitigation	Well designed and constructed
steps	 Sealed to prevent seepage and run-off
	• Ground water, rainwater and storm water managed so it does not enter the
	underpass
	All underpass effluent captured and managed as part of the effluent system
	• Designed for optimum cow flow, no pooling of water or effluent in the bottom
	of underpass, or large or sharp stones
Comments	Underpass design can have a significant impact on cow-flow, which influences the
	volume of effluent generated in the underpass.

Underpasses.

Photo One: Underpass with storm-water drain and sump.

Photo Two: Underpass with storm-water drain, effluent drain, sump and hose for cleaning occasionally.

Photo Three: Underpass showing pipework.

 $\mathsf{Page} 52$

Section Five	Q. 5.17 Assess silage pad(s) and feed storage bunkers
Assessment	Ideally, silage pads should be a sealed pad with leachate captured and managed.
	There should be no evidence of:
	Leachate escaping from the silage or feed bunker and entering surface water
	 Excessive leachate generation which is not being captured and treated in the
	effluent system
	 Any residue from a feed storage site reaching a waterway
Risk	 Highly toxic silage leachate reaching surface or groundwater
	Silage pad requirements may vary depending on the type of silage. Grass silage
	produces more leachate than maize silage, and therefore poses a greater
	environmental risk.
Mitigation	Stored on sealed and contained surface. Sealing requirements differ between
steps	regions, but a concrete pad is best practice, particularly for grass silage
	 Leachate drains into effluent system so it does not reach a waterway
	Leachate is diluted and applied to land
Comments	Regional council rules regarding the sealing of silage pads varies from region to
	region.

Photo One: A grass silage stack with uncontained leachate. Ideally grass stacks should be on a sealed surface with a drain directed to a sump where leachate can be diluted and applied to land. This situation is a critical risk if the leachate/runoff is entering a waterway.

Photo Two: Feed storage bunkers on a sealed surface. Ideally these should be coverable, drain into the effluent system.

 ${}^{\mathsf{Page}}54$

Section Five	Q. 5.18 Assess standoff, feed pads and animal housing barns
Assessment	Standoff, feed pads and barns vary in their construction and use. The facility must
	be designed and constructed in such a way that it is sealed to prevent leachate
	losses. Leachate must be captured and managed via sub-surface drainage.
	Look for evidence of:
	 Effluent running off the pad and entering surface (or ground) water.
	 Ineffective sealing to prevent leaching losses
	Estimation the following factors for each month of the year:
	 Average Daily cow numbers on the pad
	 Average hours per day spent on the pad
	Average daily wash volume
Risk	 Seepage, leaching and run-off
	Animal health and welfare risks
Mitigation	Constructed from suitable material to maintain a durable surface underfoot in
steps	wet conditions
	Constructed drainage and effluent leachate capture and management under
	standoff pads and areas which do not have a sealed surface
Comments	Regional council requirements vary.
	Required for the Dairy Effluent Storage Calculator

Section Five	Q. 5.19 Assess the wash-down system on pads
Assessment	Assess the following:
	How is the pad cleaned,
	The frequency of cleaning
	• The method of cleaning (clean water, recycled effluent water or scraping)
	 Daily water volume used for cleaning
Risk	Pads can be a significant contributor to total annual effluent volumes. Pad effluent
	is typically very high in solids, which may block effluent irrigators if a solids
	separation system is not in place
Mitigation	Effluent water recycling can significantly reduce effluent volumes and conserve
steps	water
	The use of scrapers can also be an effective method of cleaning pads
Comments	Required for the Dairy Effluent Storage Calculator

Section Five	Q. 5.20 Assess health and safety around the effluent system infrastructure
Assessment	 Examples could include but are not limited to evidence of: Safety fencing or covers around or on sumps, silt traps, channels, effluent ponds to make them safe for children, stock and farm staff. Appropriate safety signage is in place Safety ladders, life buoys, safety ropes installed in ponds All electrical work is done to industry standards Access to pontoons, pumps, stirrers etc. is safe with appropriate safety measures in place All moving parts are appropriately guarded where possible All safety equipment used in the operation of the effluent system is fit for purpose All equipment used in the operation of the effluent system is well maintained That operation and servicing of the system can be and is carried out in a safe manner Shut off valves fitted on hydrants Pressures levels are within safe limits Equipment required to safely shift applicators is available

 $\mathsf{Page}58$

Section Five	Q. 5.21 Assess mole and tile drains in paddocks
Background	Tile drainage removes excess water from subsoil's. Tiles are most likely to be installed in poorly drained soils. They are a gravity passive fed system that carries excess water from sub soil's to a drainage ditch, wetland or waterway. Traditional tiles were solid and water entered between the gaps and drained away however flexible corrugated and perforated plastics are often now used.
	A lot of tiles were installed but no mapping record of them kept. Most farmers will know if they have tiles on their farm, however they may not know where all of them are as often the tile outlets can be 2-3 farms away.
Assessment	To help identify tiles you can look at the topography of the land. Tiles are normally placed under a swale (dip of low lying land) from higher to lower lying areas or waterways. Look for points where naturally water would flow to. Grass or crops are often lush in these areas, Wetland style plants often grow in swales. If you look along ditches and waterways you will often see tile outlets, sometimes they are buried under long grass but you may hear water running from tile to waterway.

 ${}^{\rm Page}61$

SECTION SIX- SOIL AND LANDSCAPE CLASSIFICATION

This classification system is used to determine the soil risk profile for the effluent application area. Soil and landscape features may be categorised into one of the five classifications listed on the following page. Use the methods described in the DairyNZ *Pocket guide to determine soil risk for farm dairy effluent application* to assess the soil risk on the farm. A smart phone with a clinometer may be helpful for assessing slope. The images below show a car parked on 6° and 14° slopes.

A 6° slope – this is the upper limit of what a traveller should be used on, to manage effluent runoff risks.

A 14° slope – this is too steep for irrigation with a travelling irrigator, a suitable low rate system should be used instead.

SOIL RISK CLASSIFICATION FRAMEWORK

	1. High risk s	oils for effluent n	lanagement	2. Low risk so manaç	ils for effluent gement
Category	А	B	U	٩	ш
Soil and landscape feature	Artificial drainage or coarse soil structure	Impeded drainage or low infiltration rate	Sloping land (>7°) or land with hump & hollow drainage	Well drained flat land (<7°)	Other well drained but very light flat land (<7°)
Risk	High	High	High	Low	Low
Application depth (mm)	< SWD ¹	< SWD	< SWD	< 50% of PAW ²	≤ 10 mm & < 50% of PAW ²
Storage requirement	Apply only when SWD exists	Apply only when SWD exists	Apply only when SWD exists	24 hours drainage post saturation	24 hours drainage post saturation
Max depth: High rate tool	10 mm	10 mm	10 mm³	25 mm ⁴ (10 mm at field capacity)	10 mm
Max depth: Low rate tool	25 mm	25 mm	10 mm	25 mm	10 mm
¹ SWD is the soil water defic ² PAW is the plant available ³ ³ Only applicable when insta ⁴ Suggested maximum applic	it water in the top 300 n ntaneous application r cation depth when a si	rm of soil ate from the irrigator i uitable SWD exists (≥ 1	is less than the infiltrati 5 mm).	on rate	

Page 65

PUTTING SOIL RISKS AND CLASSIFICATIONS IN CONTEXT

High risk soil classifications:

Soil and landscape categories A and B:

Soils which drain very rapidly, i.e. mole and tile or artificial drainage. Includes very freely draining coarsely textured soils e.g. stony soils with a thin topsoil. The main risk on these soils is preferential flow (effluent bypassing the soil and making its way into ground and surface water quickly).

Impeded drainage or low infiltration rate soils are very slow to drain; these may be heavy high clay content soils which pug easily. The main risk on these soils is ponding and runoff.

These soils suit low rate application systems because of improved control over application rate and depth.

Soil and landscape category C:

Sloping land (>7°) or land with hump and hollow drainage. The main risk is runoff on these soils. A low rate application system is the only practical way of applying effluent without ponding and runoff.

Low risk soil classifications:

Soil and landscape category D:

Well drained flat land ($<7^{\circ}$) refers to soils which are generally wet-weather-safe, with deep free draining subsoil. The main risk on these soils is over-application of nutrients.

Soil and landscape category E:

Other well drained but very 'light' flat land $(<7^{\circ})$ refers to soils which drain well but may have a very thin topsoil. They don't typically have effluent or wet weather risks. The main risk on these soils is leaching of effluent past the root zone.

Section Six	Q. 6.1 Identify the soil types and soil risk on the effluent block
Assessment	Soil risk classified as 'Low Risk' or 'High Risk' using Soil Risk Framework.
	High risk area Ha
	Low risk area Ha
	Total effluent area Ha?
	Also:
	 No effluent should be applied to waterways
	High risk effluent application areas containing surface and subsurface drains are
	managed to prevent effluent entering them
Risk	Failure to recognise soil and landscape limitations can result in losses of effluent,
	nutrients and pathogens to surface and ground water.
Mitigation	Soil maps of the effluent application areas; identifying high and low risk soils, and
steps	other high risk features such as waterways and natural and artificial drainage.
	Some regional councils specify minimum distances to be observed for effluent
	application around sensitive features (e.g. waterways, geological features, property
	boundaries). Essentially no effluent (including odours) should be allowed to leave
	the property boundary. Match the effluent applicator and depth and rate of
	application to the soil and landscape characteristics and the soil moisture and
	climate parameters.
Comments	Required for the Dairy Effluent Storage Calculator.

SECTION SEVEN- ASSESSING LAND APPLICATION SYSTEMS

Section Seven	Q. 7.1 Assess pipelines/hydrants/couplings
Assessment	Sized appropriately for their function
	 Well maintained no sign of leaks or damage
Risk	Breakdown, pressure blowout
	 Leaching and overflow of effluent to the environment
Mitigation	Pipes sized appropriately for their function, and made from suitable non-corrosive
steps	material (typically PVC, Alkathene or stainless steel).
	Pipes are inspected regularly for sign of leak or strain and repaired as required.
Comments	Long distances using an incorrectly sized pipe will impact on irrigation and pump
	performance due to pressure head loss
Section Seven	Q. 7.2 Are effluent pipe joints or hydrants within 10m of a waterway?
Assessment	 Visually inspect this while on farm where practical
	 Farm maps or aerial photographs with farm infrastructure mapped out
Risk	Leak or breakdown, uncoupling leading to direct entry of effluent to a waterway.
Mitigation	Joint or hydrant on a slope leading away from the waterway, or bunding or drain,
steps	physical barrier which would prevent effluent entering the waterway
Section Seven	Q. 7.3 Assess any 'fail-safe' technologies
---------------	---
Assessment	Evidence of 'fail-safe' devices fitted to the storage or application system
Risk	'Fail-safe' technology can be a risk mitigation strategy for preventing effluent losses
	to the environment
Mitigation	Pressure gauge at the pump
steps	Pressure gauge at the applicator
	High/low pressure cut-off
	End of run cut-off switches
	Flow meter installed
	Alarms and lights
	 Float/level alarms or switches on ponds and sumps
	 Soil moisture meters and monitoring
	 Automatic switch-off on pump
	 Anti-siphon on pond and or applicator indexing valve
	 Witness wells/drains under ponds
	• Some farm management software (i.e. recording, GPS, planning, monitoring etc.)
Comments	Some technologies may be required by a regional council, however most of them
	are good practice for management and compliance, and part of the Code of Practice.

Photo One: An example of a 'failsafe' technology- a tracking system on a travelling irrigator

August 2014

IRRIGATORS AND APPLICATORS

Facility	Assessment
Q. 7.4 What type of	Note the following:
effluent	• Type (and number if there are multiple
irrigator/applicator is	units)
onsite	• Age
	Condition
	Frequency of use
Q. 7.5 What type of	 Size (horse Power/Kilowatts)
pump(s) is in use	• Type (centrifugal, progressive cavity or
	piston pump)
Q. 7.6 Winter-Spring	Use historical or current application depth
application depth	tests available, or estimate if the rate is
	varied throughout the year (mm)
Q. 7.7 Spring- Autumn	Use historical or current application depth
application depth	tests available, or estimate if the rate is
	varied throughout the year (mm)
Q. 7.8 Winter- Spring	• m³/hour
volume pumped	 Hours pumped per day
	 Total daily volume applied
Q. 7.9 Spring- Autumn	• m³/hour
volume pumped	 Hours pumped per day
	 Total daily volume applied
Q. 7.10 Is the farmer	 List any times during the year when no
able to irrigate all year	irrigation occurs
around when conditions	
permit?	

OPTIMUM PRESSURE RANGES FOR COMMONLY USED EFFLUENT

APPLICATORS

The tables on the following pages summarise the optimal operating pressure range for commonly used effluent applicators. Effluent pressure at the applicator can provide information on the following points:

If the pressure is sub optimal then:

- Pump may be too small or in need of service
- Pressure-head-loss in transit (pipe too long or too small, or elevation or distance too great for the pump)

Follow the manufacturer's specifications regarding the use of pressure gauges, including any calibration and maintenance requirements. Pressure gauges should be placed in-line as close as possible to the component (i.e. pump, hydrant, applicator) as possible.

Additional information about specific irrigators may be found at the manufacturer's website.

		Flow expected at		
Travelling	Optimum Operating Pressure Range	ideal	Wetted width at ideal	
Irrigators	psi/kpa	range	pressure range	Website for more information
Williams GB				
Magnum	200 - 600 kpa	5 - 20 lps	51 -90 metres	williamsirrigation.com/online/GB Magnum/
Williams				
Greenback Spider	200 - 600 kpa	5.5 - 8.4 lps	30 - 50 metres	williamsirrigation.com/online/greenback_spider/
Williams Spider				
Deluxe	150 - 600 kpa	4.4 - 7.2 lps	25 - 34 metres	williamsirrigation.com/online/spider deluxe travelling irrigator/
Numedic Adcam®				
750	200 - 600 kpa	5.5 - 8.4 lps	20 - 35 metres	numedic.co.nz/Presentation/Presentation1.aspx?ID=2919
			Up to 25	
Briggs 10	15-30 psi / 100-200 kpa	2 - 5.5 lps	metres	rainer.co.nz/effluent/spreaders/model-10/
	20 - 30 psi / 150-250		Up to 35	
Briggs 15	kpa	2 - 6 lps	metres	rainer.co.nz/effluent/spreaders/model-10/
	20 - 100 psi / 70-750		Up to 30	
Ecostream	kpa	3 - 8 lps	metres	ecostream.co.nz/shop/Irrigators/Travelling+Irrigator.html
			Up to 33	
Plucks LP35E	At 200 kpa	6 lps	metres	plucks.co.nz/eff_Irrigators/
Irrimax 16-14 (2				
cams & 2				
sprockets				
available)	200 - 350 kpa	4 - 6 lps	35-40 metres	irrimax.co.nz/images/one.jpg
		2.8 – 8.61 lps		
	45-60 psi / 300 –	/ 10-		
Hi-Tech Cobra	500kpa	31m3/hr	46-72 metres	hitechenviro.co.nz
Pumpn Torpedo	40-140psi	9-72m3/hr	10-102 metres	pumpn.co.nz

 ${}^{\text{Page}}73$

	Optimum	Flow expected at		
	Operating	ideal	Wetted width at	
Sprinklers/pod	Pressure	pressure	ideal pressure	
Irrigators	Range psi/kpa	range	range	Website for more information
Uni- Sprinkler				
8mm nozzle	150 -400 kpa	.8 - 1.3 lps	31 - 41 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
Uni- Sprinkler				
9mm nozzle	150 -400 kpa	1 - 1.6 lsp	33 - 42 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
Uni- Sprinkler				
10mm nozzle	150 -400 kpa	1.3 - 2 lps	34 - 44 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
Uni- Sprinkler				
12mm nozzle	150 -400 kpa	1.8 - 3 lps	34 - 47 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
Uni- Sprinkler				
14mm nozzle	200 - 500 kpa	3.3 - 5.2 lps	45 - 58 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
			22 - 25 metres	
K Line Std - Naan			(dependant on	
5002	200 -300 kpa	.163 lps	nozzle size)	rxplastics.co.nz/k-line-std-effluent
			24 - 29 metres	
K Line Mid -			(dependant on	
Senninger 5023	200 - 300 kpa	.4lps - 1 lps	nozzle size)	rxplastics.co.nz/k-line-mid-effluent
			40.2 - 43.6 metres	
K Line Maxi 70 -			(dependant on	
Senninger 7025	250 - 300 kpa	.5 lps - 2 lps	nozzle size)	rxplastics.co.nz/k-line-mid-effluent
			50m - 51m	
K Line Max 80 -		1.66 lps -	(dependant on	
Senninger 8025 S	251 - 300 kpa	4.5lps	nozzle size)	rxplastics.co.nz/k-line-mid-effluent
Uni- Sprinkler				
8mm nozzle	150 -400 kpa	.8 - 1.3 lps	31 - 41 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html
Uni- Sprinkler				
9mm nozzle	150 -400 kpa	1 - 1.6 lsp	33 - 42 metres	hitechenviro.co.nz/shop/Dairy+Effluent+Equipment/Uni+Sprinkler.html

August 2014

ASSESSING IRRIGATOR PERFORMANCE

A depth and rate test in combination with a maintenance check, speed test (for moving irrigators) and pressure test will provide a comprehensive assessment on the irrigator performance and fitness for purpose. If a depth and rate test is unable to be carried out on the day due, the combination of other assessments will provide a fair evaluation, however a disclaimer stating that an inconclusive assessment was carried out must be provided to the farmer, and if practical a return visit to complete the depth and rate test is advisable.

A rough estimate of depth applied from an applicator can be found if the flow rate and the wetted diameter and speed of the applicator are known.

To work out the area of a circular spray pattern use Πr^2

Then flow rate (L/sec) x time ÷ area = depth applied.

MAINTENANCE AND CONDITION CHECKS ON TRAVELLING IRRIGATORS.

There are at least 10 different commonly used types of Travelling Irrigator. Assess the irrigator for the following criteria if they apply.

Criteria	Assessment
Q. 7.11	Terrain (less than 7° slope) and soil type (Low Risk
Effluent	soil classification) in effluent application area is
block	suitable for this travelling irrigator.
Q. 7.12	 Appropriate rope diameter
Winch	 Suitable anchor point connection
rope,	 Auto-stop clamp fitted
anchor	 Adequate wire rope length
point, &	 No sign of fraying
auto stop	 No sign of rust
clamp	
Q. 7.13	No evidence of leaks
Tower /	 No evidence of wear / play in bushes or
riser	bearings
	Rotates smoothly
Q. 7.14	 Straight (no damage/bends)
Axles and	 Shear/roll pins correct & intact
drive-	
shafts	
Q. 7.15	No excessive wear in bushes, check for
Bushes on	play/movement
axles,	
shafts	
Q. 7.16	Cneck for wear & damage on teeth
brum	Rotate boom arm, check teeth are engaging
ratchats /	correctly
natchets /	Drive pawl clearances are correct
pawis	

Page 76

Q. 7.17	No evidence of wear & damage
Drive cams	 Check cam & follower for wear/ play
& follower	 bushes/ bearings for wear/ play & turning freely
Q. 7.18	Correct alignment
Drive	 Wear in chain / sprocket, bent teeth
chains &	
sprockets	
Q. 7.19	 Turning freely & smoothly
Gear boxes	 Drive shafts are not bent
	 Shear pins correct and intact
Q. 7.20	1-2 brakes, are present and adjusted
Winch	
drum	
brake	
Q. 7.21	 Works correctly on stop clamp
Auto stop	 Drive mechanism disengages correctly & fully
Q. 7.22	Cuts off flow to irrigator completely at end of
Automatic	run
cut off	 Pump also shuts down when valve closes
valve	
Q. 7.23	If used or relied upon, is active, calibrated,
Electronic	maintained and effective
monitoring	
Q/ 7.24	Firmly secured & correctly tensioned
Bracing	
rods /	
wires	
Q. 7.25	Secure & undamaged
BOOM	 Hinge joints / locks in good condition
Q. 7.20	 Hole size (too large will decrease pressure) Not out (worp (cplit (porich of (stratable d (b) a size d))
NUZZIES	 Not cut/worn/split/perisned/stretched/blocked Clamped fitting of fitting of the second stretched/blocked
	Clamped firmly (quick release fittings on nozzles
	such as camiock/bayonet will allow for easy nozzle
	removal. Nozzles should be changed at the same

August 2014

 $P_{Page}77$

	frequency as rubberware in the dairy)	
Q. 7.27	 Seals are not missing 	
Quick-	 Locking legs not broken 	
locks		
Q. 7.28	 Optimum tyre pressure / condition noted 	
Wheels		
Q. 7.29	Length	
Drag hose	 Splits/ leaks/crimped or kinked 	
condition	Camlocks	
	 Correct grade of pipework (pressure and size) 	
	• 150-200m is generally accepted as maximum	
	recommended drag hose length	
Q. 7.30	No damage	
Camlocks	 Easily pull apart / fit together 	
	 Locking legs in place, not broken 	
	Clamped firmly / correctly to pipe	
	• Fitted in correct direction so locking legs are	
	trailing (not facing direction of travel where they	
	can catch and pull open)	
Q. 7.31	Laid correctly to minimise drag on irrigator	
Drag hose	• No more than 3m distance between guide wire	
layout	and outgoing hose loop	
Q. 7.32	All grease nipples are in place	
Grease	Greased at all points regularly e.g. every time	
nipples	the irrigator is shifted	
Q. 7.33	No sign of effluent flowing from Irrigator after	
Siphoning	pump is shut off, or effluent puddles / signs of	
	siphoning evident in paddock.	
	 Anti-siphon options are: 	
	\circ Air inlet valves usually at the pump, or	
	 End of run shut off valves, or 	
	 Saunder's type fitted near irrigator 	C
	 Backflow prevention 	r

Q. 7.34	Check with inline pressure gauge as close as
Pressure at	possible to the applicator.
irrigator	
Q. 7.35	Look for any evidence of sub-optimal irrigation
Previous	application in the past:
application	 Blinding of pasture (heavy matting of effluent)
	Ponding
	 Crop circles (dark circles or doughnuts)

MAINTENANCE AND CONDITION CHECKS ON LOW RATE (SPRINKLER AND POD) IRRIGATORS.

There are several sprinkler / pod manufacturers /sellers using impact sprinkler guns mounted in different ways. While the guns can be made from different materials such as metal alloys or plastics and mounted in various types of pods or on skids they all operate on the same basic principle.

Setup configurations can vary, for example: multi sprinkler / pod chains, permanently fixed sprinklers in paddock or long lateral multi sprinklers.

Sprinklers / pods size and specifications vary and can be used to achieve different aims:

• Nozzle opening sizes from 3.2 mm to 18 mm are common. Nozzle size has a large effect on application rate.

- Small nozzle sizes result in a lower application rate, but may require a solids separation system to operate
- Small nozzles increase pumping time
- Large nozzle sizes result in a higher application rate and depth, and may not require a solids separation system

A low rate system with a timer allows pulse irrigation. Change in pump on and off times can be varied to meet the soil conditions at the time of irrigation.

Note: Application rate x application time = Application depth

Assess the irrigator for the following criteria if they apply.

Criteria	Assessment
Q. 7.36	Is the type of sprinkler/pod system suited to
Effluent	the terrain and soil type, based on the soil
block	risk classification and the application
	depth/rate of the irrigator?
Q. 7.37	 No sign of leaks
Tower /	 No sign of wear in bushes/bearing rotates
riser	smoothly
Q. 7.38	 Turns freely through full circle
Sprinkler	 Has acceptable amount of movement in
body	bushes (10-15% from centre of bush)
Q. 7.39	Seals are not missing
Quick-locks	 Locking legs not broken
Q. 7.40	Moves freely
Impact arm	 Has acceptable amount of movement in
	bushes (10-15% from centre of bush)
	Returns correctly
	 Jet breaker wedge is in good condition
	 Sprinkler turns through its full range
	correctly and smoothly
Q. 7.41	Mounting / base is secure and stable
Mounting	
Q. 7.42	 Cuts off flow to applicators completely at
Automatic	end of run
cut-off valve	 Pump also shuts down when valve closes
Q. 7.43	Recommended to control irrigation time and
Pump Run	therefore application depth. If in place, is it
timer	used and effective?
Q. 7.44	If used or relied upon, is active, calibrated,
Electronic	maintained and effective
monitoring	
Q. 7.45	Hole size (too large will decrease pressure

Page**81**

Nozzles	and performance)
	 Not cut / worn / split perished/blocked
	Secured firmly
Q. 7.46	Length
Hose	 Splits/ leaks/ damage
condition	Camlocks
	 Correct grade of pipe (pressure and size)
Q. 7.47	Pods/sprinklers are not overlapping
Hose layout	
Q. 7.48	No damage
Camlocks	 Easily pulls apart / fits together
	 Locking legs in place, not broken
	 Seals are not missing
	 Clamped firmly / correctly to pipe
	• Fitted in correct direction so locking legs
	are trailing behind, not digging into soil.
Q. 7.49	 Effluent flowing from applicator after
Siphoning	pump is shut off
	 Effluent puddles / signs of siphoning
	evident in paddock.
	Anti-siphon options are:
	\circ Air inlet valves usually at the pump, or
	 End of run shut off valves, or
	 Saunder's type fitted near irrigator.
Q. 7.50	Check with an inline Pressure Gauge. Ensure
Pressure at	gauges are fitted in place on main pipe not on
sprinklers	lateral pipes
Q. 7.51	Look for any evidence of sub-optimal
Previous	irrigation application in the past:
applications	Blinding of pasture (heavy matting of
	effluent)
	Ponding
	 Crop circles (dark circles or doughnuts)

MAINTENANCE AND CONDITION CHECKS ON CANNON

IRRIGATORS.

Cannons can be mounted on various types of skids or on trailers.

Sprinklers / pods size and specifications vary and can be used to achieve different aims:

Nozzle opening sizes from 10mm to 18mm are common. Nozzle size has a large effect on application rate.

- Small nozzle sizes result in a lower application rate, but may require a solids separation system to operate
- Large nozzle sizes result in a higher application rate, and may not require a solids separation system

Pulse irrigation such as 1 hour on / 1 hour off / 1 hour on, may be required to avoid effluent ponding and run off. Alternatively, 15 minutes in one hour until required depths are met.

Note: Application rate x application time = Application depth

Assess the irrigator for the following criteria if they apply.

Criteria	Assessment
Q. 7.52	Cannons are often used to irrigate onto
Effluent	sidings and hillsides where there is high risk
block	of runoff and ponding.
	There are often waterways at the bottom of
	these irrigated areas resulting in the
	possibility of effluent entering the waterway.
	It is important to ensure that the type of
	sprinkler/pod system is suited to the terrain
	and soil type, based on the soil risk
	classification and the application depth/rate
	of the irrigator.
Q. 7.53	No sign of leaks
Tower / riser	 No sign of wear / movement in
	bushes/bearing
	 Main body rotates smoothly
	 Grease nipples greased regularly (every
	time irrigator is shifted is a general rule)
Q. 7.54	 Turns freely through full circle
Sprinkler	 Has correct amount of movement in
main body	bushes
Q. 7.55	 Moves freely and smoothly
Impact arm	 Has correct amount of movement in
	bushes or bearings.
	Returns correctly
	 Sprinkler turns through its full range
	correctly and smoothly
Q. 7.56	 Jet breaker is in good condition
Jet breaker /	 No sign of wear
wedge	Moves freely
	 Works effectively to move the impact
	arm as required to move the main body
	through its correct range of movement

August 2014

 ${}_{\text{Page}}84$

Q. 7.57	Controls application areas to full or part
Inversion	circle ,
Ring	 Check levers, arms & pins are free and
	working correctly
Q. 7.58	Mounting / base is secure and stable
Mounting	
Q. 7.59	 Seals are not missing
Quick-locks	 Locking legs not broken
Q. 7.60	 Cuts off flow to cannon completely at
Automatic	end of run
cut-off valve	 Pump also shuts down when valve closes
Q. 7.61	Recommended to control irrigation time and
Pump Run	therefore application depth
timer	
Q. 7.62	If in place, is it used and effective?
Electronic	
monitoring	
Q. 7.63	 Hole size (too large will decrease
Q. 7.63 Nozzles	 Hole size (too large will decrease pressure)
Q. 7.63 Nozzles	 Hole size (too large will decrease pressure) Not cut / worn / split Perished
Q. 7.63 Nozzles	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly
Q. 7.63 Nozzles Q. 7.64	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length
Q. 7.63 Nozzles Q. 7.64 Drag hose	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks
Q. 7.63 Nozzles Q. 7.64 Drag hose condition	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks
Q. 7.63 Nozzles Q. 7.64 Drag hose condition	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm
Q. 7.63 Nozzles Q. 7.64 Drag hose condition	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes,
Q. 7.63 Nozzles Q. 7.64 Drag hose condition	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC
Q. 7.63 Nozzles Q. 7.64 Drag hose condition	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes)
Q. 7.63 Nozzles Q. 7.64 Drag hose condition Q. 7.65	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes) No damage
Q. 7.63 Nozzles Q. 7.64 Drag hose condition Q. 7.65 Camlocks	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes) No damage Easily pulls apart / fits together
Q. 7.63 Nozzles Q. 7.64 Drag hose condition Q. 7.65 Camlocks	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes) No damage Easily pulls apart / fits together Locking legs in place, not broken
Q. 7.63 Nozzles Q. 7.64 Drag hose condition Q. 7.65 Camlocks	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes) No damage Easily pulls apart / fits together Locking legs in place, not broken Seals are not missing
Q. 7.63 Nozzles Q. 7.64 Drag hose condition Q. 7.65 Camlocks	 Hole size (too large will decrease pressure) Not cut / worn / split Perished Clamped firmly Length Splits/ leaks Camlocks Correct grade of pipework (63mm Outside Diameter for alkathene pipes, and 110mm Inside Diameter for PVC pipes) No damage Easily pulls apart / fits together Locking legs in place, not broken Seals are not missing Clamped firmly / correctly to pipe

	are trailing behind and not digging into the soil										
	SOIL										
Q. 7.66	 Effluent flowing from applicator after 										
Siphoning	pump is shut off										
	 Effluent puddles / Signs of siphoning 										
	evident in paddock										
	Anti-siphon options are:										
	 Air inlet valves usually at the pump, 										
	or										
	 End of run shut off valves, or 										
	 Saunder's type fitted near irrigator. 										
Q. 7.67	Most cannons require a minimum pressure										
Pressure at	of 30 psi to operate efficiently.										
cannon											
Q. 7.68	Look for any evidence of sub-optimal										
Previous	irrigation application in the past:										
applications	Blinding of pasture (heavy matting of										
	effluent)										
	Ponding										
	Crop circles (dark circles or doughnuts)										

 ${}^{\text{Page}}86$

MAINTENANCE AND CONDITION CHECKS ON PIVOT IRRIGATORS.

Pivot irrigators are often a combination of fresh and effluent irrigation. Either a 'shandy' where effluent is mixed into freshwater and applied through the same nozzles, or where effluent is carried through a separate hose.

Pivots performance can be assessed in a similar way to travelling irrigators, although the variance in travel speed along the length of the pivot must be taken into account, and therefore effluent tests carried out as close to the centre of the pivot circle as possible, where the greatest application potential is. In addition, if mounted guns are used on pivots, depth and rate tests should be done under these.

Consider if any sensitive areas are excluded for effluent application such as over waterways, tracks and roads etc. Look for signs of ponding or runoff occurring on pivot wheel tracks, especially on hill country.

Pivot systems do not need an application depth test completed if the pivot system passes the visual inspection below, the effluent is diluted with water through the main pivot system and the farmer has a 'Backflow Prevention Certificate'.

However, if using underslung nozzles and/or guns at the end of the pivot then an application depth test needs to be completed. There are at several different commonly used types of Centre Pivots. Assess the irrigator for the following criteria if they apply.

Criteria	Assessment								
Q. 7.69	Has the farmer a 'Backflow Prevention Certificate								
	(needed for effluent mixed with water and under-								
	slung systems)?								
Q. 7.70	Is the centre pivot system suited to the terrain								
Effluent	and soil type, based on the soil risk classification								
block	and the application depth/rate of irrigator?								
Q. 7.71	 No evidence of leaks 								
Base of	 No evidence of wear 								
Pivot	 Back flow prevention installed (if required) 								
Q.7.72	Cuts off flow to applicators completely at end								
Automatic	of run								
cut-off valve	 Pump shuts down when valve closes 								
Q.7.73	Recommended to control irrigation time and								
Pump Run	therefore application depth. If in place is it								
timer	used effectively?								
Q.7.74	 If in place, is it active, calibrated maintained 								
Electronic	and effective								
monitoring	 Set to cut off around waterways and/or property boundary 								
Q. 7.75	 Check with inline pressure gauge as close as 								
Pressure at	possible to the applicator.								
irrigator									
Q. 7.76	 No evidence of wear & damage 								
Hose lines/	No leaks/splits								
Span joints	 Correct grade of pipe (pressure and size) 								

Page 88

<u> </u>										
Q. 7.77	 Turns freely through full circle 									
Sprinklers/N	 Hole size (too large will decrease pressure) 									
ozzles	 Not cut/worn/split/perished/stretched or 									
	blocked									
	Secured firmly									
Q.7.78	 Axles are straight (no damage/bends) 									
Wheels	Optimum tyre pressure / condition									
	Rims not rusted/buckled etc.									
	 Any indications of gearbox oil leaks (can lead 									
	to seizures and stoppages)									
Q. 7.79	Look for any evidence of sub-optimal irrigation									
Previous	application in the past:									
application	 Blinding of pasture (heavy matting of effluent) 									
	Ponding									
	 Crop circles (dark circles or doughnuts) 									
	 Tyre rut marks (potential for effluent to pool) 									

MEASURING DEPTH AND RATE OF EFFLUENT IRRIGATION

WIND GAUGES

Prior to starting the depth and rate test, take a wind speed assessment. Note the direction and strength of the wind. Do not attempt to do a depth and rate test if the wind strength exceeds 8 ms⁻¹.

Follow any manufacturer's instructions for use of the wind gauge, including calibration requirements.

TEST PREPARATION

Test location

Test the application depth at the location which puts the pump under the greatest work load, e.g. at the greatest distance from the pump, or at the highest elevation above pump station.

Collection containers

When testing you can use either rectangle trays or standard round buckets. You will need about 60 of these. You must use a different calculation depending on the type of collection container.

Page 90

August 2014

DEPTH AND RATE TESTING TRAVELLING IRRIGATORS

Step 1: Containers

Before applying effluent, put containers in a line across the path of the applicator⁵:

1. 1-metre apart avoiding the line of the wheels or drag hose

2. Use enough containers across the spray width of the irrigator (up to 60), take into account wind drift

3. Put a stone in each container to stop it blowing over.

Step 2: Run irrigator

Run the irrigator as normal:

1. Record the actual amount of time that effluent is falling in the containers.

Step 3:

Measure the depth of effluent in every 'wet' container.

⁵ The variance in travel speed along the length of pivots must be taken into account, and therefore effluent tests carried out close to the base, middle and end of pivot where effluent is irrigated. In addition, if mounted guns are used on pivots, depth and rate tests should be done under these.

For RECTANGLE TRAYS: 1. Remove stone

2. Tip effluent into measuring

jug record the volume (ml)

3. Write down volume for each container.

For ROUND BUCKETS:

1. Remove stone

2. Tip effluent into measuring jug record the volume (ml)

3. Write down volume for each container.

Calculations Rectangle containers

Round containers

SPEED TEST FOR TRAVELLING IRRIGATORS

The speed of a travelling irrigator can be assessed after starting a depth and rate test.

Using a straight piece of hose behind the irrigator, mark a set distance such as 5m along the drag hose. Mark this distance on the hose using spray paint (such as stock raddle) or electrical tape, and when you are ready to start recording, place a stationary marker on the ground (either a pig-tail fencing standard or again using spray paint on the grass).

Measure the time taken for the hose markers to move over time.

Distance/minute	Result			
>1m/minute	Optimal			
1m – 0.8m/minute	Good			
<0.8/minute	Slow			
<0.5/minute	Very slow			

LOW RATE APPLICATION SYSTEMS

Step 1: Location Go to the middle pod on the last pod line in the series (furthest away from the hydrant)

Step 2: Layup containers

Lay out collection containers out in an "L" shape from the middle pod. Containers should be spaced at 1 m intervals and cover right to the edge of the spray area of the pod. Put a stone in each container to stop it blowing over if needed.

Page 96

Step 3: Turn on

Turn the system on. Run the pods for one hour. Record the start and finish time.

Step 4: Measure how much

Measure the depth of effluent in every 'wet' container.

For RECTANGLE TRAYS:

1. Remove weight

2. Tip effluent into measuring jug record the volume (ml)

3. Write down volume for each container.

For ROUND BUCKETS WITH SLOPING SIDES:

1. Remove weight

2. Tip effluent into measuring jug record the volume (ml)

3. Write down volume for each container.

Page 97

DEPTH AND RATE TESTING PIVOT IRRIGATORS

Matching the method of application of the pivot to the different type of tests required has been broken down into three different application tests. **Type 1: Injection Systems**

An injected system is a system that injects the effluent into the water mainline of the pivot and irrigates it through the existing pivot nozzles. This can be as a mixture of effluent and water or raw effluent on its own. The pivot nozzles should be calibrated for an even distribution of water and effluent so that the same depth is delivered over the entire pivot span.

A visual inspection of the pivot nozzles applying effluent should be done to identify any issues or underperforming nozzles. If this is identified, then an application test using the same methodology as an underslung system (see below) should be done to identify any problems.

If there is no visual problem evident on the pivot (general condition, blocked nozzles), the application depth can be recorded from the control box on the pivot. This depth can then be put into the data capture form under application depth and no further application test is required for the pivot.

If the application depth is not displayed, then an application test along the same methodology as an underslung system would be required.

Page 98

August 2014

Type 2: Underslung Systems

An underslung system is a system that transports effluent to the pivot in a separate mainline to the water, and the effluent mainline is then "slung" under the pivot spans. The application test of this should be broken down into four main areas as described below.

We recommend that an application test be done at the beginning of the application area of effluent for the pivot, the middle of the effluent application area of the pivot and at the end of the effluent application area of the pivot. Also if the effluent is pumped through an end gun then this should also be tested.

Buckets should be placed evenly under the effluent nozzles out to the end of the wetted width, there may be some overlap, with the centre being the dropper position, and cover as much the span as possible.

Type 3: Tower Cannon systems

Pivots that use cannons at the towers should also be tested by following the same methodology as a travelling irrigator for the test for depth and rate.

The testing should be done on at least one tower and if only one is tested, the closest tower available to the centre of the pivot should be tested as this will give the greatest depth and rate as it will be the slowest moving tower available.

To Test Underslung Systems,

Step 1: Containers

- 1. Before starting the pivot and applying effluent make sure the fresh water is turned off to the pivot.
- 2. At each area of application test (beginning, middle, end and gun) put 5-10 containers evenly spaced from the centre of each span of the pivot.
- Make sure the containers are ahead of the pivot and the application area and in a line in front of the path of the pivot span (use a measuring tape to mark distance and get a straight line).
- 4. Put a stone in each container to stop them blowing over.

Step 2: Run pivot

- 1. Run the pivot as normal
- Record the actual amount of time that effluent is falling in the containers. The variance in travel speed along the length of pivots must be taken into account as this will be different for each span measured and requires careful management.

Step 3: Measure the depth of effluent in every 'wet' container.

Page 100

For **RECTANGLE** Trays:

- 1. Remove stone
- 2. Tip effluent into measuring jug record the volume (ml)
- 3. Write down volume for each container.

For **ROUND** Buckets:

- 1. Remove stone
- 2. Tip effluent into measuring jug record the volume (ml)
- 3. Write down volume for each container.

Calculations

Rectangular containers

Round buckets with SLOPED sides

Record the depth from each container, e.g. on a sprinkler with a 40 m diameter wetted area, there may be 20-40 containers.

Tip: To convert seconds or minutes to decimal, divide by 60 e.g. 21 mins = 21 ÷ 60 = 0.35 hrs.

For assistance and advice on testing application depths and rates on pivot systems, please contact DairyNZ.

Planning irrigation timing for Low Rate systems

Irrigation timing

How often you need to move pods depends on your systems. When conditions are most suitable, irriagate as much of the time as possible. Move pods multiple times a day and get your pond right down.

Once you know the above three numbers use the tables below to work out how long your pods can stay in one place before moving. Use 4 ml application rate if you have not had your system tested and do not know your system's specific application rate.

Time between moving pods to apply 15mm depth											
Minutes	Operating	Your systems average application rate per hour (mm/hr)									
		2 ml	2.5 ml	3 ml	3.5 ml	4 ml	4.5 ml	5 ml	5.5 ml	6 ml	
On	Off	Period of time between moves (hrs)									
15	15	15.00	12.00	10.00	8.50	7.50	6.50	6.00	5.50	5.00	
15	30	22.50	18.00	15.00	13.00	11.25	10.00	9.00	8.25	7.50	
15	45	30.00	24.00	17.25	20.00	15.00	13.00	12.00	10.75	10.00	
20	20	15.00	12.00	10.00	8.50	7.50	6.50	6.00	5.50	5.00	
20	40	22.50	18.00	15.00	13.00	11.25	10.00	9.00	8.25	7.50	
30	30	15.00	12.00	10.00	8.50	7.50	6.50	6.00	5.50	5.00	
60	60	15.00	12.00	10.00	8.50	7.50	6.50	6.00	5.50	5.00	
On cont	On continuously 7.50 6.00 5.00 4.25 3.75 3.25 3.00 2.75 2.5								2.5		

Time between moving pods to apply 20mm depth											
Minutes (Ainutes Operating Your systems average application rate per hour (mm/hr)										
		2 ml	2.5 ml	3 ml	3.5 ml	4 ml	4.5 ml	5 ml	5.5 ml	6 ml	
On	Off	Period of time between moves (hrs)									
15	15	20.00	16.00	13.50	11.50	10.00	9.00	8.00	7.25	6.50	
15	30	30.00	24.00	20.00	17.00	15.00	13.50	12.00	11.00	10.00	
15	45	40.00	32.00	26.50	22.75	20.00	17.75	16.00	14.50	13.50	
20	20	20.00	16.00	13.50	11.50	10.00	9.00	8.00	7.25	6.50	
20	40	30.00	24.00	20.00	17.00	15.00	13.50	12.00	11.00	10.00	
30	30	20.00	16.00	13.50	11.50	10.00	9.00	8.00	7.25	6.50	
60	60	20.00	16.00	13.50	11.50	10.00	9.00	8.00	7.25	6.50	
On continuously 10.00 8.00 6.50 5.75 5.00 4.50 4.00 3.50 3.2								3.25			
August 2014

SECTION EIGHT – RISK ASSESSMENT

The risk assessment framework has been developed using principles of risk assessment derived from a number of other programmes reviewed. The numbering and weighting factors have been selected based on an AgResearch risk assessment modelling different scenario's to estimate the environment impact of various defects in infrastructure and on-farm management decisions.

System		Component
component	Description	score
Shed	All effluent contained	1
infrastructure	Potential for occasional discharge	2
	Occasional but obvious discharge	3
	Minor and continuous trickle	4
	Obvious and considerable discharge	10
	Considerable direct discharge to water	С
Weighting		X1
System component	score x weighting = final score for shed	
infrastructure		
C= Critical Issue seen during WoF		

System		Component
component	Description	score
Sand traps	All effluent contained	1
	Occasional but obvious discharge	3
	Obvious and considerable discharge	10
Weighting		X1
System compone	nt score x weighting = final score for sand traps	

System		Component
component	Description	score
Records	Appropriate records kept	1
	Incomplete records	3
	No records kept	5
Weighting		X1
System compone	nt score x weighting = final score for records	

System	Description	Component
component		score
Nutrient loadings for effluent block	Nutrient budget available and meets industry good practice (<150Kg N/ha for effluent block)	1
	Nutrient budget available and meets compliance for effluent block	2
	Nutrient budget not available	5
	Effluent block in nutrient budget within 25% of what required	5
	Effluent block too small	10
Weighting		X3
System component loadings	score x weighting = final score for nutrient	

System component	Description	Component score
Sump	All effluent contained and alarmed	1
	Contained	2
	Minor and continuous trickle	4
	Obvious and considerable discharge	10
	Considerable direct discharge to water	С
Weighting		X3
System compone	ent score x weighting = final score for sump	

System		Component
component	Description	score
Farm Drains	No sign of raw effluent in drain	1
	Occasional but obvious discharge going into	
	drain	3
	Obvious and considerable discharge of	
	effluent to drain	10
	Considerable direct discharge to water	С

Page 107

Weighting	X2
System component score x weighting = final score for channels and drains	

System		Component
component	Description	score
Effluent	Adequate (within 25% of DESC)	1
storage/capacity	Export off site	1
	Only 60% storage of what is required	7
	No adequate storage	С
Weighting	· · · · · · · · · · · · · · · · · · ·	X5
System component	score x weighting = final score for storage	
C= Critical Issue see	n during WoF	
System		Component
component	Description	score
Effluent	Clay liner, no obvious leakage with	
storage/leakage	supporting evidence that meets required	
	standard	1
	Appropriate synthetic liner no obvious	
	leakage	1
	No obvious leakage but synthetic liner choice	
	questionable	3
	Clay liner used but no supporting evidence on	
	methodology used for construction	3
	No obvious leakage no liner	5
	Evidence of obvious leakage	C
Weighting		X4
System component leakage	score x weighting = final score for pond	
System		Component
component	Description	score
Effluent	no slumping or holes	1
storage/integrity	Straight batters (<2:1)	3
	Minor slumping or holes	5
	Major slumping and/or holes	10
Weighting		X5
System component integrity	score x weighting = final score for pond	
Storage risk = stora	ge volume + leakage + integrity	

System		Component
component	Description	score
Stone trap solids	All effluent captured and contained on sealed	
	surface adequate size	1
	Effluent captured and contained unsealed	
	surface	3
	Stored on unsealed surface- no surface	
	discharge	4
	Obvious and considerable discharge	8
	Direct discharge to water	10
Weighting		X1
System component solids	score x weighting = final score for stone trap	

System		Component
component	Description	score
Lanes and	No obvious discharge to water	1
raceways	Some mitigation options obvious	2
	Occasional discharge to water	5
	Direct discharge to water	10
Weighting		X1
System component	score x weighting = final score for lanes and	
raceways		

System		Component
component	Description	score
Bridges and	No obvious discharge to water	1
culverts	Some mitigation options obvious	2
	Occasional discharge to water	5
	Direct discharge to water	10
	Direct discharge to water with daily use	С
Scale	Rarely used	x0.5
	Monthly	x1
	Daily use	x1.5
Weighting		X1
System component	score x weighting x scale= final score for	
bridges and culverts	5	

System		Component
component	Description	score
Underpasses	Irrigated discharge to land	1
	No obvious discharge to water	2
	Some mitigation options obvious	5
	Occasional discharge to water	7
	Direct discharge to water with daily use	С
Scale	Rarely used	x0.5
	Monthly	x1
	Daily use	x1.5
Weighting		X2
System componer	nt score x weighting x scale= final score for	
underpasses		
C= Critical Issue se	een during WoF	

System		Component
component	Description	score
Silage pads/feed	Directed to effluent system	1
bins	Irrigated discharge to land	1
	No obvious discharge to water	2
	Some mitigation options obvious	4
	Occasional overland discharge	10
	Direct discharge to surface water large	
	volume of leachate	С
Scale	Small	x0.5
	Medium	x1
	Large	x1.5
Weighting		X3
System component	score x weighting x scale= final score for	
silage pads		
C= Critical Issue seen	n during WoF	

System		Component
component	Description	score
Feed pad	Lined (synthetic, concrete, compacted clay),	
(compacted,	all effluent captured directed to an FDE	
confined feeding	system	1
area)	Unsealed all effluent captured directed to an	
	FDE system	2
	Sealed and uncontained	4
	Unsealed and uncontained	8
	Potential discharge to water	10
	Direct discharge to surface water	С
Weighting		X5
System component solids	score x weighting = final score for stone trap	
C= Critical Issue see	n during WoF	

System		Component
component	Description	score
Stand-off /loafing	Lined (synthetic, concrete, compacted clay),	
area	all effluent captured directed to an FDE	
(constructed	system	1
facility)	Unsealed all effluent captured directed to an	
	FDE system	2
	Sealed and un contained	4
	Unsealed and uncontained	8
	Potential discharge to water	10
	Direct discharge to surface water	С
Weighting		X5
System component	score x weighting = final score for standoff	
C= Critical Issue seen during WoF		

System		Component
component	Description	score
Housed wintering	Lined (synthetic, concrete, compacted clay),	
facility (covered)	all effluent captured directed to an FDE	
	system	1
	0.5m depth organic bedding with no drainage	1
	Inorganic bedding with no drainage	3
	Unsealed all effluent captured	4
	Sealed and uncontained	5
	Unsealed and uncontained	7
	Potential discharge to water	8
	Direct discharge to surface water	С
Weighting		X3
System component	score x weighting = final score for herd	
housing		
C= Critical Issue see	n during WoF	

System		Component
component	Description	score
Solids storage	All effluent captured and contained on sealed	
(scraped or piled	surface adequate size	1
effluent solids)	Effluent captured and contained on unsealed	
E.g. separated	surface	3
solids, feed pad or	Stored on unsealed surface- no surface	
housed winter	discharge	4
facility	Obvious and considerable discharge	8
	Direct discharge to water	С
Scale	<1 m ³	x0.5
	1-5 m ³	x1
	>5 m ³	x1.5
Weighting		X3
System component solids storage	score x weighting x scale= final score for	

System		Component
component	Description	score
Liquid effluent	No obvious leaks	1
irrigation-	Potential for occasional discharge	2
conveyance (pipes	Occasional but obvious discharge	4
and hydrants)	Minor and continuous trickle	8
	Obvious and considerable discharge to	
	surface water	С
Weighting		X2
System component	score x weighting = final score for irrigation	
conveyance		
C= Critical Issue see	n during WoF	

System		Component
component	Description	score
Liquid effluent	Meets required application depth ie	
irrigation-	consent/permitted activity	1
application depth	Depth OK but high rate system being used on	
and soil risk	high risk soils	5
	Does not meet application depth ie	
	consent/permitted activity	10
Weighting		X5
System component	score x weighting = final score for application	
depth and soil risk		
System		Component
component	Description	score
Liquid effluent	No sign of poor irrigation	1
irrigation-	Poor irrigation observations	5
application to		
land	Obvious runoff and ponding	10
	Obvious and considerable runoff entering	
	waterways	С
Weighting		X5
System component application	score x weighting = final score for liquid land	
Irrigation applicatio	n risk = depth and land application	

System		Component
component	Description	score
Solids land	Evenly spread over paddock at depth	1
application	appropriate for nutrient content of material	
system	Evenly spread inappropriate depths	5
(bedding,	High risk of discharge to ground water or	10
separated solids)	surface water	
	Direct discharge to surface water of runoff	С
Weighting		X5
System component	score x weighting = final score for solid land	
application		
C= Critical Issue see	n during WoF	

System		
component	Description	Sighted
Effluent	Safe fence around sump/ escape ladders	Y/N
storage/safety	Safe fencing around storage pond/escape	
	ladders	Y/N
	Safety egress from storage facilities	Y/N
	Safety signs and other mitigations in place	Y/N
Noted as observations and action points in final report		
Fences but no ladde	rs, buoys or signs present	

Regional		
Council		
Compliance	Description	Sighted
Non-compliance	Note any deviation from consent condition	Y/N
of consent or	Storage	Y/N
Permitted Activity	Application depth and rate	Y/N
conditions		
	Other	Y/N
Any significant devia	ation = Critical issue of WoF	

SECTION NINE- ASSESSMENT DEBRIEF AND REPORTING

If unable to contact farmer for exit interview leave text message that off the farm

Thank the farmer for their time and assistance on the day, and provide a verbal summary of your findings either in person or via phone call later in the day. During the audit, it is important to make a note of key feedback to present to the farmer after the visit.

Provide a realistic estimation of timeframe required for you to return the formal audit report and recommendations to the farmer. The following table outlines some key points to cover:

What	Point out areas which the farmer has done			
you liked	particularly well,	particularly well, including any mitigation or		
on site	management str	ategies		
Action	Areas of risk	Areas of risk Suggested Why of concern		
points		Action		
	Note key areas	Suggested	Brief explanation	
	causing an	mitigation	of why this risk	
	immediate or	strategies	area was raised as	
	potential	to minimise	a concern, and the	
	environmental	or	importance of	
	or compliance	eliminate	rectifying it.	
	risk	risk noted		

GENERAL POINTS ABOUT REPORTING

Be careful not to say something you may have to contradict in your written report, in case the farmer takes action between the audit and receiving the final report. If in doubt, leave it out of the verbal debrief.

Language

- keep language objective
- state assumptions clearly
- If an area was unable to assessed fully, state that in the report
- The final report should clearly outline the scope of the audit
- Encourage farmers to seek suitable professional advice if significant changes are necessary to their farm system

The final report should suggest that any modifications undertaken as a result of this audit should be done to meet the Code of Practice standards.

SECTION TEN- APPENDIX

USEFUL CONTACT DETAILS

Northland	www.nrc.govt.nz
Regional Council	www.nrc.govt.nz/Environment/Farm-
-	Management/Farm-Dairy-Effluent/
	Phone 0800 002 004
Auckland	www.aucklandcouncil.govt.nz
Council	www.aucklandcouncil.govt.nz/en/planspoliciesprojects/
	plansstrategies/districtRegionalPlans/regionalplans/auc
	kland-regional-plan-farm-dairy-
	discharges/Pages/home.aspx
	Phone 09 301 0101
Waikato	www.waikatoregion.govt.nz
Regional Council	www.waikatoregion.govt.nz/Council/Policy-and-
	plans/Rules-and-regulation/Regional-Plan/Waikato-
	Regional-Plan/3-Water-Module/35-Discharges/355-
	Implementation-MethodsFarm-Effluent-Discharges/
	Phone 0800 800 401
Bay of Plenty	www.boprc.govt.nz
Regional Council	<i>Effluent is covered under Rule 32 in the Land and Water</i>
	Plan. Information about farming activities can be found
	under:
	www.boprc.govt.nz/media/31767/Publication-090528-
	GuideToRegionalPlansFarmingActivities.pdf
	Phone 0800 884 880
Taranaki	www.trc.govt.nz/
Regional Council	www.trc.govt.nz/Farm-dairy-effluent/
	Phone 06 765 7127
Hawkes Bay	www.hbrc.govt.nz/
Regional Council	Phone 06 835 9200
Horizons	www.horizons.govt.nz
Regional Council	Phone 06 9522 800
1	

Greater	www.gw.govt.nz	
Wellington	Rule 4: www.gw.govt.nz/rule-4-agricultural-effluent-	
Regional Council	and-other-on-farm-processes/	
	Rule 13: www.gw.govt.nz/Rule-13-Agricultural-effluent/	
	Phone 0800 496 734	
Tasman District	www.tasman.govt.nz	
Council	www.tasman.govt.nz/policy/plans/tasman-resource-	
	management-plan/resource-management-plan-volume-	
	1-text/resource-management-plan-part-vi-discharges/	
	Phone 03 543 8400	
Marlborough	www.mdc@marlborough.govt.nz	
District Council	Phone 03 520 7400	
West Coast	www.wcrc.govt.nz	
Regional Council	Phone 0508 800 118	
Environment	www.ecan.govt.nz	
Canterbury	Phone 0800 324 636	
Otago Regional	www.orc.govt.nz	
Council	www.orc.govt.nz/Publications-and-Reports/Farming-	
	and-Land-Management/Dairy-farming/	
	Phone 0800 474 082	
Environment	www.es.govt.nz	
Southland	www.es.govt.nz/media/5868/fde-dairy-booklet.pdf	
	Phone 0800 76 88 45	

DairyNZ	www.dairynz.co.nz	
	Phone 07 858 3750	
	email info@dairynz.co.nz	
Fonterra	www.fonterra.com	
	Phone 09 374 9000	
Tatua	www.tatua.com	
	Phone 07 889 3999	
Westland Milk Products	www.westland.co.nz	
	Phone 3 756 9800	
Synlait	www.synlait.com	
	Phone 03 373 3000	
Open Country Dairy	www.opencountry.co.nz	
	Phone 9 589 1372	
Miraka	www.miraka.co.nz	
	Phone 0800 647 252	
AgResearch	www.agresearch.co.nz	
	Phone 07 834 6600	
Lincoln University	www.lincoln.ac.nz	
	Phone 0800 10 60 10	
Massey University	www.massey.ac.nz	
	Phone 0800 627 739	

FOOD SAFETY MINIMUM DISTANCES

The Ministry of Primary Industries enforces the following minimum distances for food safety reasons. Any food safety aspects are covered under the scope of the annual on-farm dairy assessment audit; which is coordinated by the dairy company.

Distance from the farm dairy				
>10m	>20m	>45m		
 Effluent sump (<22,000L) Septic tanks Grain silo if over concrete (must be 10m from milk vat) 	 Effluent storage (22,500-100,000L) Poultry/dog/cat housing Livestock housing/loafing barns (concrete) Hay barns/ other buildings Stand-off pad/feed pads (impervious cleanable floor) Fertiliser storage Supplement feed storage Pesticide storage and mixing 	 Effluent pond (>22,500L) Silage and balage Pigs Dead animals Stand-off pads Un-concreted feed pad/herd housing 		

TERMINOLOGY AND GLOSSARY

Best practice- carrying out activities in a way that minimises their environmental impact

Controlled activity- an activity requiring council consent but will be approved

Discretionary activity- an activity requiring consent which may be granted or rejected at discretion of the council, activity considered discretionary if it is defined as so in plan, or not defined in plan, or prohibited in an inoperative plan

Non-complying activity- an activity requiring consent, not considered compliant that will have a minor effect and isn't contrary to council plan objectives.

Permit- an authorisation document proving consent for a particular activity

Resource consent- the authorisation given to certain activities or uses of natural and physical resources required under the RMA

Restricted discretionary activity- an activity requiring consent that may or may not be granted with conditions imposed, authority considers restricted matters when making decision

RMA- the Resource Management Act 1991, the overriding legislative document governing the management of all New Zealand's resources

Territorial Authority- district or city council with governmental authority